• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Lehrstuhllogo
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften
Suche öffnen
  • English
  • Mein Campus
  • FAUdir
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften

Lehrstuhllogo

Menu Menu schließen
  • Lehrstuhl
    • Team
    • Karriere
    • Kontakt und Anfahrt
    Portal Lehrstuhl
  • Forschung
    • Additive Fertigung
    • Numerische Simulation
    • Gießereitechnik
    • Ultraharte Schichten
    • Hochleistungslegierungen
    • Ausstattung
    • Publikationen
    • Dissertationen
    Portal Forschung
  • Lehre
    • Lehrveranstaltungen
    • Studentische Arbeiten
    • Skripten und Anleitungen
    Portal Lehre
  1. Startseite
  2. Forschung
  3. Numerische Simulation
  4. Simulation der additiven Fertigung

Simulation der additiven Fertigung

Bereichsnavigation: Forschung
  • Additive Fertigung
  • Numerische Simulation
    • Simulation der additiven Fertigung
    • Multikriterielle Optimierung
    • Simulation der Schaumbildung
  • Gießereitechnik
  • Ultraharte Schichten
  • Hochleistungslegierungen
  • Ausstattung
  • Publikationen
  • Dissertationen

Simulation der additiven Fertigung


   Im Rahmen der additiven Fertigung konzentriert sich die Arbeitsgruppe „Numerische Simulation“ auf strahlbasierte Verfahren im Pulverbett. Hier können sowohl verschiedenste Metalle (Ti64, TiAl, IN718) als auch Polymere (PA12) simuliert werden. Forschungsschwerpunkte sind in enger Kooperation mit der experimentellen Arbeitsgruppe „Additive Fertigung“ das Verständnis der grundlegenden Mechanismen beim Pulverschmelzen und der Materialkonsolidierung sowie der Vorhersage innovativer Prozessstrategien bezüglich z.B. Bauteildichte, Gefüge oder chemischer Zusammensetzung.
   Um eine prädiktive Software erstellen zu können sind möglichst exakte physikalische und numerische Modelle notwendig. Der wichtigste Aspekt hierbei ist die korrekte Modellierung des thermischen Haushalts des Prozesses. Nahezu alle Modifikationen der Prozessparameter haben einen Einfluss auf die Wärmeleitung, den Energieeintrag oder den Wärmeverlust durch beispielsweise Wärmestrahlung oder Verdampfung. Weiterhin sind viele Werkstoffparameter temperaturabhängig und somit sensitiv gegenüber einer korrekten Modellierung. Beim Aufschmelzen des Werkstoffs entsteht ein Schmelzbad, dessen Dynamik im Wesentlichen durch Kapillarität, Verdampfungsdrücke, Benetzungseffekte, Marangoni-Strömungen und Gravitation bestimmt wird. Bei der Erstarrung haben der Temperaturgradient und die Erstarrungsgeschwindigkeit einen maßgeblichen Einfluss auf die entstehende Mikrostruktur.
   Die 2D Simulationssoftware SAMPLE2D des selektiven Elektronenstrahlschmelzens (SEBM) basiert auf der Software zur Modellierung der Schaumbildung. Die Basissoftware wurde um viele Module erweitert: Diese umfassen Funktionalitäten wie Elektronenstrahlabsorption, Phasenumwandlungen, (selektive) Verdampfung oder Kornwachstum. Ziel der Software ist nach einer experimentellen Validierung die Vorhersage von Prozessfester und die Erklärung für im Prozess auftretende Phänomene. Ein Großteil der auftretenden Effekte beim selektiven Elektronenstrahlschmelzen (SEBM) können mit einer 2D Simulation abgebildet werden. Für eine realistischere Modellierung der Schmelzpooldynamik und des Kornwachstums sind jedoch 3D Simulationen hilfreich. Deswegen wurden am Lehrstuhl WTM hierfür zwei unterschiedliche Programme entwickelt. Die 3D Simulationssoftware SAMPLE3D der Hydrodynamik erfordert eine hochparallele Implementierung, die in Zusammenarbeit mit dem Lehrstuhl für Systemsimulation entstanden ist. Hier kann die Schmelzpooldynamik und die Konsolidierung in voller räumlicher Dimension untersucht werden. Dadurch konnten Prozessfenster für dichte Bauteile für innovative Prozessstrategien vorhergesagt werden. Für das Kornwachstum wird die separate Software SAMPLE3DGS entwickelt, die es ermöglicht, alle möglichen Orientierung der Körner während des Prozesses abzubilden. Es wird ein makroskopischer Ansatz gewählt, d.h. hier wird nicht mehr jedes einzelne Pulverpartikel aufgelöst, sondern ein Kontinuum betrachtet. Weiterhin wird hier ausschließlich die Thermodynamik berechnet. Hintergrund ist der hohe Rechenaufwand für Domänen in der Größenordnung realistischer Bauteile.
   Neben der Förderung durch Industriepartner und Einzelverfahren der DFG, werden die Simulationsprogramme maßgeblich innerhalb des SFB 814 „Additive Fertigung“ entwickelt (http://www.sfb814.forschung.uni-erlangen.de/).




Ansprechpartner:

    • Dr.-Ing. Matthias Markl
Wesentliche physikalische Phänomene beim SEBM
(Vergrößern)
Simulationsvideo des Aufbaus eines schrägen T-Stücks
(Vergrößern)
Ergebnis einer Kornstruktursimulation eines T-Stücks mit Kornselektion, Neukornbildung an Schichtanbindungsfehlern und Kornselektion im Randbereich
(Vergrößern)
Zeitliche Entwicklung einer einzelnen Scanlinie für zwei unterschiedliche Strahlleistungen mit Verdampfungsdruck und experimentellen Vergleich
(Vergrößern)
Vergleich des Aluminiumverlusts zwischen Simulation und Experiment für mehrmaliges Schmelzen einer einzelnen Scanlinie
(Vergrößern)
Flächiges Aufschmelzen und Erstarren (Farbskala zeigt Orientierung der Körner) von vier Schichten mit einer Rotation der Scanrichtung um 90° je Schicht
(Vergrößern)
Schmelzen des Schriftzuges VerTec in eine Einzellage Pulver (zum Abspielen vergrößern)
(Vergrößern)
Wesentliche physikalische Phänomene beim SEBM
Simulationsvideo des Aufbaus eines schrägen T-Stücks
Ergebnis einer Kornstruktursimulation eines T-Stücks mit Kornselektion, Neukornbildung an Schichtanbindungsfehlern und Kornselektion im Randbereich
Zeitliche Entwicklung einer einzelnen Scanlinie für zwei unterschiedliche Strahlleistungen mit Verdampfungsdruck und experimentellen Vergleich
Vergleich des Aluminiumverlusts zwischen Simulation und Experiment für mehrmaliges Schmelzen einer einzelnen Scanlinie
Flächiges Aufschmelzen und Erstarren (Farbskala zeigt Orientierung der Körner) von vier Schichten mit einer Rotation der Scanrichtung um 90° je Schicht
Schmelzen des Schriftzuges VerTec in eine Einzellage Pulver (zum Abspielen vergrößern)

Publikationen:


  • Semjatov N., Wahlmann B., Körner C.:
    Multiple interaction electron beam powder bed fusion for controlling melt pool dynamics and improving surface quality
    In: Additive Manufacturing 90 (2024), Art.Nr.: 104316
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2024.104316
  • Breuning C., Markl M., Körner C.:
    Correction to: A Scan Strategy Based Compensation of Cumulative Heating Effects in Electron Beam Powder Bed Fusion (Progress in Additive Manufacturing, (2024), 10.1007/s40964-024-00807-6)
    In: Progress in Additive Manufacturing (2024)
    ISSN: 2363-9512
    DOI: 10.1007/s40964-024-00841-4
  • Yang Z., Koepf JA., Markl M., Körner C.:
    Effect of scanning strategies on grain structure and texture of additively manufactured lattice struts: A numerical exploration
    In: Advanced Engineering Materials (2024)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202400661
  • Breuning C., Markl M., Körner C.:
    A Scan Strategy Based Compensation of Cumulative Heating Effects in Electron Beam Powder Bed Fusion
    In: Progress in Additive Manufacturing (2024)
    ISSN: 2363-9512
    DOI: 10.1007/s40964-024-00807-6
  • Kupfer T., Breuning C., Markl M.:
    Graph-based spot melting sequence for electron beam powder bed fusion
    In: Additive Manufacturing 91 (2024), Art.Nr.: 104321
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2024.104321
  • Markl M., Azadi Tinat MR., Berger T., Renner J., Körner C.:
    Extracting powder bed features via electron optical images during electron beam powder bed fusion
    In: Additive Manufacturing Letters 10 (2024), Art.Nr.: 100220
    ISSN: 2772-3690
    DOI: 10.1016/j.addlet.2024.100220
  • Wahlmann B., Markl M., Körner C.:
    A thermo-mechanical model for hot cracking susceptibility in electron beam powder bed fusion of Ni-base superalloys
    In: Materials & Design 237 (2024), Art.Nr.: 112528
    ISSN: 0264-1275
    DOI: 10.1016/j.matdes.2023.112528
  • Markl M., Colosimo BM., Körner C.:
    Progress in electron beam additive manufacturing
    In: Progress in Additive Manufacturing (2024)
    ISSN: 2363-9512
    DOI: 10.1007/s40964-024-00679-w
  • Yang Z., Markl M., Körner C.:
    Comprehensive numerical investigation of laser powder bed fusion process conditions for bulk metallic glasses
    In: Additive Manufacturing 81 (2024), Art.Nr.: 104026
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2024.104026
  • Koepf JA., Pistor J., Markl M., Körner C.:
    Numerical Microstructure Prediction for Lattice Structures Manufactured by Electron Beam Powder Bed Fusion
    In: Crystals 14 (2024), Art.Nr.: 149
    ISSN: 2073-4352
    DOI: 10.3390/cryst14020149
  • Scherr R., Liepold P., Markl M., Körner C.:
    A CALPHAD-Informed Enthalpy Method for Multicomponent Alloy Systems with Phase Transitions
    In: Modelling 5 (2024), S. 367-391
    ISSN: 2673-3951
    DOI: 10.3390/modelling5010020
  • Böhm J., Breuning C., Markl M., Körner C.:
    A new approach of preheating and powder sintering in electron beam powder bed fusion
    In: International Journal of Advanced Manufacturing Technology (2024)
    ISSN: 0268-3768
    DOI: 10.1007/s00170-024-13966-1
  • Yang Z.:
    Modeling and Simulation of Bulk Metallic Glass Crystallization During Laser Powder Bed Fusion (Dissertation, 2024)
    DOI: 10.25593/open-fau-715
  • Scherr R., Markl M., Körner C.:
    Volume of fluid based modeling of thermocapillary flow applied to a free surface lattice Boltzmann method
    In: Journal of Computational Physics 492 (2023), Art.Nr.: 112441
    ISSN: 0021-9991
    DOI: 10.1016/j.jcp.2023.112441
  • Wahlmann B., Markl M., Körner C.:
    A Thermo-Mechanical Model for Hot Cracking Susceptibility in Electron Beam Powder Bed Fusion of Ni-Base Superalloys
    In: Materials & Design 237 (2023), S. 112528
    ISSN: 0264-1275
    DOI: 10.1016/j.matdes.2023.112528
  • Breuning C., Markl M., Körner C.:
    A return time compensation scheme for complex geometries in electron beam powder bed fusion
    In: Additive Manufacturing 76 (2023), S. 103767
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2023.103767
  • Koepf JA., Gotterbarm M., Kumara C., Markl M., Körner C.:
    Alternative Approach to Modeling of Nucleation and Remelting in Powder Bed Fusion Additive Manufacturing
    In: Advanced Engineering Materials (2023)
    ISSN: 1438-1656
    DOI: 10.1002/adem.202201682
  • Breuning C., Böhm J., Markl M., Körner C.:
    High-Throughput Numerical Investigation of Process Parameter-Melt Pool Relationships in Electron Beam Powder Bed Fusion
    In: Modelling 4 (2023), S. 336-350
    ISSN: 2673-3951
    DOI: 10.3390/modelling4030019
  • Yang Z., Huber F., Krapf A., Merle B., Markl M., Schmidt M., Körner C.:
    Revealing bulk metallic glass crystallization kinetics during laser powder bed fusion by a combination of experimental and numerical methods
    In: Journal of Non-Crystalline Solids 619 (2023), Art.Nr.: 122532
    ISSN: 0022-3093
    DOI: 10.1016/j.jnoncrysol.2023.122532
  • Mergheim J., Breuning C., Burkhardt C., Hübner D., Köpf J., Herrnböck L., Yang Z., Körner C., Markl M., Steinmann P., Stingl M.:
    Additive manufacturing of cellular structures: Multiscale simulation and optimization
    In: Journal of Manufacturing Processes 95 (2023), S. 275-290
    ISSN: 1526-6125
    DOI: 10.1016/j.jmapro.2023.03.071
  • Yang Z., Kuesters Y., Logvinov R., Markl M., Körner C.:
    SAMPLE3D: A versatile numerical tool for investigating texture and grain structure of materials processed by PBF processes
    IVth International Conference on Simulation for Additive Manufacturing (Sim-AM 2023) (München, 26. Juli 2023 - 28. Juli 2023)
    DOI: 10.23967/c.simam.2023.006
  • Yang Z., Markl M., Körner C.:
    Predictive simulation of bulk metallic glass crystallization during laser powder bed fusion
    In: Additive Manufacturing 59 (2022), Art.Nr.: 103121
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2022.103121
  • Breuning C., Pistor J., Markl M., Körner C.:
    Basic Mechanism of Surface Topography Evolution in Electron Beam Based Additive Manufacturing
    In: Materials 15 (2022), Art.Nr.: 4754
    ISSN: 1996-1944
    DOI: 10.3390/ma15144754
  • Yang Z., Al-Mukadam R., Stolpe M., Markl M., Deubener J., Körner C.:
    Isothermal crystallization kinetics of an industrial-grade Zr-based bulk metallic glass
    In: Journal of Non-Crystalline Solids 573 (2021), Art.Nr.: 121145
    ISSN: 0022-3093
    DOI: 10.1016/j.jnoncrysol.2021.121145
  • Rausch A., Pistor J., Breuning C., Markl M., Körner C.:
    New grain formation mechanisms during powder bed fusion
    In: Materials 14 (2021), Art.Nr.: 3324
    ISSN: 1996-1944
    DOI: 10.3390/ma14123324
  • Wahlmann B., Leidel D., Markl M., Körner C.:
    Numerical Alloy Development for Additive Manufacturing towards Reduced Cracking Susceptibility
    In: Crystals 11 (2021)
    ISSN: 2073-4352
    DOI: 10.3390/cryst11080902
  • Küng V., Scherr R., Markl M., Körner C.:
    Multi-material model for the simulation of powder bed fusion additive manufacturing
    In: Computational Materials Science 194 (2021)
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2021.110415
  • Breuning C., Arnold C., Markl M., Körner C.:
    A multivariate meltpool stability criterion for fabrication of complex geometries in electron beam powder bed fusion
    In: Additive Manufacturing 45 (2021), Art.Nr.: 102051
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2021.102051
  • Kergaßner A., Köpf J., Markl M., Körner C., Mergheim J., Steinmann P.:
    A Novel Approach to Predict the Process-Induced Mechanical Behavior of Additively Manufactured Materials
    In: Journal of Materials Engineering and Performance (2021)
    ISSN: 1059-9495
    DOI: 10.1007/s11665-021-05725-0
  • Yang Z., Bauereiß A., Markl M., Körner C.:
    Modeling laser beam absorption of metal alloys at high temperatures for selective laser melting
    In: Advanced Engineering Materials 23 (2021), Art.Nr.: 2100137
    ISSN: 1438-1656
    DOI: 10.1002/adem.202100137
  • Rausch A., Gotterbarm M., Pistor J., Markl M., Körner C.:
    New grain formation by constitutional undercooling due to remelting of segregated microstructures during powder bed fusion
    In: Materials 13 (2020), S. 1-14
    ISSN: 1996-1944
    DOI: 10.3390/ma13235517
  • Körner C., Markl M., Koepf JA.:
    Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review
    In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science (2020)
    ISSN: 1073-5623
    DOI: 10.1007/s11661-020-05946-3
  • Gotterbarm M., Rausch A., Körner C.:
    Fabrication of Single Crystals through a µ-Helix Grain Selection Process during Electron Beam Metal Additive Manufacturing
    In: Metals (2020)
    ISSN: 2075-4701
    DOI: 10.3390/met10030313
  • Köpf J., Soldner D., Ramsperger M., Mergheim J., Markl M., Körner C.:
    Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting
    In: Computational Materials Science 162 (2019), S. 148-155
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2019.03.004
  • Köpf J., Gotterbarm M., Markl M., Körner C.:
    3D multi-layer grain structure simulation of powder bed fusion additive manufacturing
    In: Acta Materialia 152 (2018), S. 119-126
    ISSN: 1359-6454
    DOI: 10.1016/j.actamat.2018.04.030
  • Rausch A., Markl M., Körner C.:
    Predictive simulation of process windows for powder bed fusion additive manufacturing: Influence of the powder size distribution
    In: Computers & Mathematics with Applications (2018)
    ISSN: 0898-1221
    DOI: 10.1016/j.camwa.2018.06.029
  • Hübner D., Gotterbarm M., Kergaßner A., Köpf J., Pobel C., Markl M., Mergheim J., Steinmann P., Körner C., Stingl M.:
    Topology Optimization in Additive Manufacturing Considering the Grain Structure of Inconel 718 using Numerical Homogenization
    iCAT 2018 (Maribor, 10. Oktober 2018 - 11. Oktober 2018)
    In: Proceedings of 7th International Conference on Additive Technologies 2018
  • Köpf J., Rasch M., Meyer A., Markl M., Schmidt M., Körner C.:
    3D grain growth simulation and experimental verification in laser beam melting of IN718
    10th CIRP Conference on Photonic Technologies (LANE 2018) (Fürth, 4. September 2018 - 6. September 2018)
    In: Procedia CIRP 74 (2018) 2018
    DOI: 10.1016/j.procir.2018.08.034
    URL: https://www.sciencedirect.com/science/article/pii/S2212827118308187/pdf?md5=ea85f15a94f75d82fce787e5b0a20225πd=1-s2.0-S2212827118308187-main.pdf
  • Bauereiß A.:
    Mesoskopische Simulation des selektiven Strahlschmelzens mittels einer Lattice Boltzmann Methode mit dynamischer Gitteranpassung (Dissertation, 2018)
  • Klassen A., Forster V., Jüchter V., Körner C.:
    Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl
    In: Journal of Materials Processing Technology 247 (2017), S. 280-288
    ISSN: 0924-0136
    DOI: 10.1016/j.jmatprotec.2017.04.016
  • Markl M., Lodes M., Franke M., Körner C.:
    Additive Fertigung durch selektives Elektronenstrahlschmelzen
    In: Schweissen und Schneiden (2017), S. 30-39
    ISSN: 0036-7184
  • Rai A., Helmer H., Körner C.:
    Simulation of grain structure evolution during powder bed based additive manufacturing
    In: Additive Manufacturing 13 (2017), S. 124-134
    ISSN: 2214-7810
    DOI: 10.1016/j.addma.2016.10.007
  • Riedlbauer DR., Scharowsky T., Singer R., Steinmann P., Körner C., Mergheim J.:
    Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V
    In: International Journal of Advanced Manufacturing Technology (2017)
    ISSN: 0268-3768
    DOI: 10.1007/s00170-016-8819-6
    URL: http://link.springer.com/article/10.1007/s00170-016-8819-6
  • Rausch A., Küng V., Pobel C., Markl M., Körner C.:
    Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
    In: Materials 10 (2017)
    ISSN: 1996-1944
    DOI: 10.3390/ma10101117
  • Markl M., Lodes M., Franke M., Körner C.:
    Additive manufacturing using selective electron beam melting
    In: Welding and Cutting (2017), S. 177-184
    ISSN: 1612-3433
  • Klassen A., Forster V., Körner C.:
    A multi-component evaporation model for beam melting processes
    In: Modelling and Simulation in Materials Science and Engineering 25 (2017), Art.Nr.: 025003
    ISSN: 1361-651X
    DOI: 10.1088/1361-651X/aa5289
  • Markl M., Rausch A., Forster V., Pobel C., Körner C.:
    Predictive numerical simulations of processing windows for powder bed based additive manufacturing
    2017 Simulation for Additive Manufacturing, Sinam 2017 (Munich, 11. Oktober 2017 - 13. Oktober 2017)
    In: Simulation for Additive Manufacturing 2017, Sinam 2017 2017
  • Köpf J., Markl M., Körner C.:
    3D multilayer grain structure simulation for beam-based additive manufacturing
    2017 Simulation for Additive Manufacturing, Sinam 2017 (Munich, DEU, 11. Oktober 2017 - 13. Oktober 2017)
    In: Simulation for Additive Manufacturing 2017, Sinam 2017 2017
  • Markl M., Körner C.:
    Multiscale Modeling of Powder Bed-Based Additive Manufacturing
    In: Annual Review of Materials Research 46 (2016), S. 93-123
    ISSN: 1531-7331
    DOI: 10.1146/annurev-matsci-070115-032158
  • Rai A., Markl M., Körner C.:
    A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing
    In: Computational Materials Science 124 (2016), S. 37-48
    ISSN: 0927-0256
    DOI: 10.1016/j.commatsci.2016.07.005
  • Markl M., Bauereiß A., Rai A., Körner C.:
    Numerical Investigations of Selective Electron Beam Melting on the Powder Scale
    Fraunhofer Direct Digital Manufacturing Conference 2016 (Berlin, 16. März 2016 - 17. März 2016)
    In: Proceedings of the Fraunhofer Direct Digital Manufacturing Conference 2016 2016
  • Köpf J., Rai A., Markl M., Körner C.:
    3D Grain Structure Simulation for Beam-Based Additive Manufacturing
    6th International Conference on Additive Technologies iCAT (Nürnberg, 29. November 2017 - 30. November 2016)
    In: Proceedings of the 6th International Conference on Additive Technologies iCAT 2016 2016
  • Markl M., Ammer R., Rüde U., Körner C.:
    Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam
    In: International Journal of Advanced Manufacturing Technology 78 (2015), S. 239-247
    ISSN: 0268-3768
    DOI: 10.1007/s00170-014-6594-9
    URL: http://link.springer.com/article/10.1007/s00170-014-6594-9
  • Markl M., Körner C.:
    Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method
    In: Journal of Computational Physics 301 (2015), S. 230-246
    ISSN: 0021-9991
    DOI: 10.1016/j.jcp.2015.08.033
  • Markl M.:
    Numerische Modellierung und Simulation des selektiven Elektronenstrahlschmelzens basierend auf einer gekoppelten Gitter Boltzmann und Diskrete Element Methode (Dissertation, 2015)
  • Ammer R., Markl M., Jüchter V., Körner C., Rüde U.:
    Validation Experiments for LBM Simulations of Electron Beam Melting
    In: International Journal of Modern Physics C (2014), S. 1-9
    ISSN: 0129-1831
    DOI: 10.1142/S0129183114410095
    URL: http://arxiv.org/pdf/1402.2440.pdf
  • Bauereiß A., Scharowsky T., Körner C.:
    Defect generation and propagation mechanism during additive manufacturing by selective beam melting
    In: Journal of Materials Processing Technology 214 (2014), S. 2522-2528
    ISSN: 0924-0136
    DOI: 10.1016/j.jmatprotec.2014.05.002
  • Klassen A., Scharowsky T., Körner C.:
    Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods
    In: Journal of Physics D: Applied Physics 47 (2014), Art.Nr.: 275303
    ISSN: 0022-3727
    DOI: 10.1088/0022-3727/47/27/275303
  • Ammer R., Ljungblad U., Markl M., Körner C., Rüde U.:
    Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method
    In: Computers & Mathematics with Applications 67 (2014), S. 318-330
    ISSN: 0898-1221
    DOI: 10.1016/j.camwa.2013.10.001
    URL: http://www.sciencedirect.com/science/article/pii/S0898122113005944
  • Klassen A., Bauereiß A., Körner C.:
    Modelling of electron beam absorption in complex geometries
    In: Journal of Physics D-Applied Physics 47 (2014), Art.Nr.: 065307
    ISSN: 0022-3727
    DOI: 10.1088/0022-3727/47/6/065307
  • Bauer M., Schornbaum F., Godenschwager C., Markl M., Anderl D., Köstler H., Rüde U.:
    A Python extension for the massively parallel framework waLBerla
    4th Workshop on Python for High Performance and Scientific Computing (New Orleans, 17. November 2014 - 17. November 2014)
    In: online 2014
    URL: http://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2014/submissions/pyhpc2014_submission_5.pdf
  • Körner C., Bauereiß A., Attar E.:
    Fundamental consolidation mechanisms during selective beam melting of powders
    In: Modelling and Simulation in Materials Science and Engineering 21 (2013), Art.Nr.: 085011
    ISSN: 0965-0393
    DOI: 10.1088/0965-0393/21/8/085011
  • Markl M., Ammer R., Ljungblad U., Rüde U., Körner C.:
    Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment
    In: Procedia Computer Science 18 (2013), S. 2127-2136
    ISSN: 1877-0509
    DOI: 10.1016/j.procs.2013.05.383
    URL: http://www.sciencedirect.com/science/article/pii/S1877050913005267
  • Scharowsky T., Bauereiß A., Singer R., Körner C.:
    Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting
    23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2012 (Austin, TX)
    URL: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84889688177&origin=inward
  • Körner C., Attar E., Heinl P.:
    Mesoscopic simulation of selective beam melting processes
    In: Journal of Materials Processing Technology 211 (2011), S. 978-987
    ISSN: 0924-0136
    DOI: 10.1016/j.jmatprotec.2010.12.016
  • Attar E., Körner C.:
    Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition
    In: International Journal of Heat and Fluid Flow 32 (2011), S. 156-163
    ISSN: 0142-727X
    DOI: 10.1016/j.ijheatfluidflow.2010.09.006
  • Attar E.:
    Simulation of Selective Electron Beam Melting Process (Dissertation, 2011)
  • Attar E., Körner C.:
    Lattice Boltzmann method for dynamic wetting problems
    In: Journal of Colloid and Interface Science 335 (2009), S. 84-93
    ISSN: 0021-9797
    DOI: 10.1016/j.jcis.2009.02.055

Lehrstuhl Werkstoffkunde und Technologie der Metalle
Martensstr. 5
91058 Erlangen
Deutschland
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • Twitter
  • Xing
  • RSS-Feed
Nach oben